Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evidence for widespread selection in shaping the genomic landscape during speciation of Populus.

Identifieur interne : 000416 ( Main/Exploration ); précédent : 000415; suivant : 000417

Evidence for widespread selection in shaping the genomic landscape during speciation of Populus.

Auteurs : Jing Wang [République populaire de Chine] ; Nathaniel R. Street [Suède] ; Eung-Jun Park [Corée du Sud] ; Jianquan Liu [République populaire de Chine] ; P R K. Ingvarsson [Suède]

Source :

RBID : pubmed:32068935

Abstract

Increasing our understanding of how evolutionary processes drive the genomic landscape of variation is fundamental to a better understanding of the genomic consequences of speciation. However, genome-wide patterns of within- and between- species variation have not been fully investigated in most forest tree species despite their global ecological and economic importance. Here, we use whole-genome resequencing data from four Populus species spanning the speciation continuum to reconstruct their demographic histories and investigate patterns of diversity and divergence within and between species. Using Populus trichocarpa as an outgroup species, we further infer the genealogical relationships and estimate the extent of ancient introgression among the three aspen species (Populus tremula, Populus davidiana and Populus tremuloides) throughout the genome. Our results show substantial variation in these patterns along the genomes with this variation being strongly predicted by local recombination rates and the density of functional elements. This implies that the interaction between recurrent selection and intrinsic genomic features has dramatically sculpted the genomic landscape over long periods of time. In addition, our findings provide evidence that, apart from background selection, recent positive selection and long-term balancing selection have also been crucial components in shaping patterns of genome-wide variation during the speciation process.

DOI: 10.1111/mec.15388
PubMed: 32068935


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evidence for widespread selection in shaping the genomic landscape during speciation of Populus.</title>
<author>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Park, Eung Jun" sort="Park, Eung Jun" uniqKey="Park E" first="Eung-Jun" last="Park">Eung-Jun Park</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioresources, National Institute of Forest Science, Suwon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Bioresources, National Institute of Forest Science, Suwon</wicri:regionArea>
<wicri:noRegion>Suwon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32068935</idno>
<idno type="pmid">32068935</idno>
<idno type="doi">10.1111/mec.15388</idno>
<idno type="wicri:Area/Main/Corpus">000451</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000451</idno>
<idno type="wicri:Area/Main/Curation">000451</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000451</idno>
<idno type="wicri:Area/Main/Exploration">000451</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evidence for widespread selection in shaping the genomic landscape during speciation of Populus.</title>
<author>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Park, Eung Jun" sort="Park, Eung Jun" uniqKey="Park E" first="Eung-Jun" last="Park">Eung-Jun Park</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioresources, National Institute of Forest Science, Suwon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Bioresources, National Institute of Forest Science, Suwon</wicri:regionArea>
<wicri:noRegion>Suwon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular ecology</title>
<idno type="eISSN">1365-294X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Increasing our understanding of how evolutionary processes drive the genomic landscape of variation is fundamental to a better understanding of the genomic consequences of speciation. However, genome-wide patterns of within- and between- species variation have not been fully investigated in most forest tree species despite their global ecological and economic importance. Here, we use whole-genome resequencing data from four Populus species spanning the speciation continuum to reconstruct their demographic histories and investigate patterns of diversity and divergence within and between species. Using Populus trichocarpa as an outgroup species, we further infer the genealogical relationships and estimate the extent of ancient introgression among the three aspen species (Populus tremula, Populus davidiana and Populus tremuloides) throughout the genome. Our results show substantial variation in these patterns along the genomes with this variation being strongly predicted by local recombination rates and the density of functional elements. This implies that the interaction between recurrent selection and intrinsic genomic features has dramatically sculpted the genomic landscape over long periods of time. In addition, our findings provide evidence that, apart from background selection, recent positive selection and long-term balancing selection have also been crucial components in shaping patterns of genome-wide variation during the speciation process.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32068935</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-294X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>03</Month>
</PubDate>
</JournalIssue>
<Title>Molecular ecology</Title>
<ISOAbbreviation>Mol Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Evidence for widespread selection in shaping the genomic landscape during speciation of Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>1120-1136</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/mec.15388</ELocationID>
<Abstract>
<AbstractText>Increasing our understanding of how evolutionary processes drive the genomic landscape of variation is fundamental to a better understanding of the genomic consequences of speciation. However, genome-wide patterns of within- and between- species variation have not been fully investigated in most forest tree species despite their global ecological and economic importance. Here, we use whole-genome resequencing data from four Populus species spanning the speciation continuum to reconstruct their demographic histories and investigate patterns of diversity and divergence within and between species. Using Populus trichocarpa as an outgroup species, we further infer the genealogical relationships and estimate the extent of ancient introgression among the three aspen species (Populus tremula, Populus davidiana and Populus tremuloides) throughout the genome. Our results show substantial variation in these patterns along the genomes with this variation being strongly predicted by local recombination rates and the density of functional elements. This implies that the interaction between recurrent selection and intrinsic genomic features has dramatically sculpted the genomic landscape over long periods of time. In addition, our findings provide evidence that, apart from background selection, recent positive selection and long-term balancing selection have also been crucial components in shaping patterns of genome-wide variation during the speciation process.</AbstractText>
<CopyrightInformation>© 2020 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-3793-3264</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Street</LastName>
<ForeName>Nathaniel R</ForeName>
<Initials>NR</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Eung-Jun</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Bioresources, National Institute of Forest Science, Suwon, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jianquan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ingvarsson</LastName>
<ForeName>Pär K</ForeName>
<Initials>PK</Initials>
<Identifier Source="ORCID">0000-0001-9225-7521</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>PRJNA576115</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Ecol</MedlineTA>
<NlmUniqueID>9214478</NlmUniqueID>
<ISSNLinking>0962-1083</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus </Keyword>
<Keyword MajorTopicYN="Y">ancient introgression</Keyword>
<Keyword MajorTopicYN="Y">incomplete lineage sorting</Keyword>
<Keyword MajorTopicYN="Y">linked selection</Keyword>
<Keyword MajorTopicYN="Y">phylogenetic relationship</Keyword>
<Keyword MajorTopicYN="Y">recombination</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>02</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32068935</ArticleId>
<ArticleId IdType="doi">10.1111/mec.15388</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Abbott, R., Albach, D., Ansell, S., Arntzen, J. W., Baird, S. J. E., Bierne, N., … Zinner, D. (2013). Hybridization and speciation. Journal of Evolutionary Biology, 26(2), 229-246.</Citation>
</Reference>
<Reference>
<Citation>Alexa, A., & Rahnenführer, J. (2009). Gene set enrichment analysis with topGO. Bioconductor Improv, 27.</Citation>
</Reference>
<Reference>
<Citation>Al-Shahrour, F., Minguez, P., Marqués-Bonet, T., Gazave, E., Navarro, A., & Dopazo, J. (2010). Selection upon genome architecture: Conservation of functional neighborhoods with changing genes. PLOS Computational Biology, 6(10), e1000953.</Citation>
</Reference>
<Reference>
<Citation>Apuli, R. P., Bernhardsson, C., Schiffthaler, B., Robinson, K. M., Jansson, S., Street, N. R., & Ingvarsson, P. K. (2020). Inferring the genomic landscape of recombination rate variation in European aspen (Populus tremula). G3: Genes, Genomes, Genetics, 10(1), 299-309.</Citation>
</Reference>
<Reference>
<Citation>Bai, W. N., Yan, P. C., Zhang, B. W., Woeste, K. E., Lin, K., & Zhang, D. Y. (2018). Demographically idiosyncratic responses to climate change and rapid Pleistocene diversification of the walnut genus Juglans (Juglandaceae) revealed by whole-genome sequences. New Phytologist, 217(4), 1726-1736.</Citation>
</Reference>
<Reference>
<Citation>Begun, D. J., & Aquadro, C. F. (1992). Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature, 356(6369), 519.</Citation>
</Reference>
<Reference>
<Citation>Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B: Methodology, 57, 289-300.</Citation>
</Reference>
<Reference>
<Citation>Booker, T. R., Ness, R. W., & Keightley, P. D. (2017). The recombination lanscape in wild house mice inferred using population genomic data. Genetics, 207(1), 297-309.</Citation>
</Reference>
<Reference>
<Citation>Brandvain, Y., Kenney, A. M., Flagel, L., Coop, G., & Sweigart, A. L. (2014). Speciation and introgression between Mimulus nasutus and Mimulus guttatus. PLOS Genetics, 10(6), e1004410.</Citation>
</Reference>
<Reference>
<Citation>Browning, B. L., & Browning, S. R. (2009). A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. The American Journal of Human Genetics, 84(2), 210-223.</Citation>
</Reference>
<Reference>
<Citation>Browning, B. L., & Browning, S. R. (2013). Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics, 194(2), 459-471.</Citation>
</Reference>
<Reference>
<Citation>Burri, R. (2017). Interpreting differentiation landscapes in the light of long-term linked selection. Evolution Letters, 1(3), 118-131.</Citation>
</Reference>
<Reference>
<Citation>Burri, R., Nater, A., Kawakami, T., Mugal, C. F., Olason, P. I., Smeds, L., … Garamszegi, L. Z. (2015). Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Research, 25(11), 1656-1665.</Citation>
</Reference>
<Reference>
<Citation>Chan, A. H., Jenkins, P. A., & Song, Y. S. (2012). Genome-wide fine-scale recombination rate variation in Drosophila melanogaster. PLOS Genetics, 8(12), e1003090.</Citation>
</Reference>
<Reference>
<Citation>Charlesworth, B. (1998). Measures of divergence between populations and the effect of forces that reduce variability. Molecular Biology and Evolution, 15(5), 538-543.</Citation>
</Reference>
<Reference>
<Citation>Charlesworth, B. (2012). The effects of deleterious mutations on evolution at linked sites. Genetics, 190(1), 5-22.</Citation>
</Reference>
<Reference>
<Citation>Charlesworth, B., Morgan, M., & Charlesworth, D. (1993). The effect of deleterious mutations on neutral molecular variation. Genetics, 134(4), 1289-1303.</Citation>
</Reference>
<Reference>
<Citation>Charlesworth, D. (2006). Balancing selection and its effects on sequences in nearby genome regions. PLOS Genetics, 2(4), e64.</Citation>
</Reference>
<Reference>
<Citation>Comeron, J. M., Williford, A., & Kliman, R. (2008). The Hill-Robertson effect: Evolutionary consequences of weak selection and linkage in finite populations. Heredity, 100(1), 19.</Citation>
</Reference>
<Reference>
<Citation>Cruickshank, T. E., & Hahn, M. W. (2014). Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Molecular Ecology, 23(13), 3133-3157.</Citation>
</Reference>
<Reference>
<Citation>Cutter, A. D., & Payseur, B. A. (2013). Genomic signatures of selection at linked sites: Unifying the disparity among species. Nature Reviews Genetics, 14(4), 262.</Citation>
</Reference>
<Reference>
<Citation>Degnan, J. H., & Salter, L. A. (2005). Gene tree distributions under the coalescent process. Evolution, 59(1), 24-37.</Citation>
</Reference>
<Reference>
<Citation>Delmore, K. E., Lugo Ramos, J. S., Van Doren, B. M., Lundberg, M., Bensch, S., Irwin, D. E., & Liedvogel, M. (2018). Comparative analysis examining patterns of genomic differentiation across multiple episodes of population divergence in birds. Evolution Letters, 2(2), 76-87.</Citation>
</Reference>
<Reference>
<Citation>DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., … Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491.</Citation>
</Reference>
<Reference>
<Citation>Du, S., Wang, Z., Ingvarsson, P. K., Wang, D., Wang, J., Wu, Z., … Zhang, J. (2015). Multilocus analysis of nucleotide variation and speciation in three closely related P opulus (S alicaceae) species. Molecular Ecology, 24(19), 4994-5005.</Citation>
</Reference>
<Reference>
<Citation>Durand, E. Y., Patterson, N., Reich, D., & Slatkin, M. (2011). Testing for ancient admixture between closely related populations. Molecular Biology and Evolution, 28(8), 2239-2252.</Citation>
</Reference>
<Reference>
<Citation>Dutheil, J. Y., Munch, K., Nam, K., Mailund, T., & Schierup, M. H. (2015). Strong selective sweeps on the X chromosome in the human-chimpanzee ancestor explain its low divergence. PLOS Genetics, 11(8), e1005451.</Citation>
</Reference>
<Reference>
<Citation>Eckenwalder, J. E. (1996). Systematics and evolution of Populus. In R. F. Stettler (Ed.), Biology of Populus and its implications for management and conservation (vol. 7, pp. 32). Ottawa, ON: NRC Research Press.</Citation>
</Reference>
<Reference>
<Citation>Edelman, N. B., Frandsen, P. B., Miyagi, M., Clavijo, B., Davey, J., Dikow, R. B., … Challis, R. (2019). Genomic architecture and introgression shape a butterfly radiation. Science, 366(6465), 594-599.</Citation>
</Reference>
<Reference>
<Citation>Edwards, S., & Beerli, P. (2000). Perspective: Gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution, 54(6), 1839-1854.</Citation>
</Reference>
<Reference>
<Citation>Ellegren, H., & Galtier, N. (2016). Determinants of genetic diversity. Nature Reviews Genetics, 17(7), 422.</Citation>
</Reference>
<Reference>
<Citation>Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll, M. (2013). Robust demographic inference from genomic and SNP data. PLOS Genetics, 9(10), e1003905.</Citation>
</Reference>
<Reference>
<Citation>Feder, J. L., Egan, S. P., & Nosil, P. (2012). The genomics of speciation-with-gene-flow. Trends in Genetics, 28(7), 342-350.</Citation>
</Reference>
<Reference>
<Citation>Flaxman, S. M., Wacholder, A. C., Feder, J. L., & Nosil, P. (2014). Theoretical models of the influence of genomic architecture on the dynamics of speciation. Molecular Ecology, 23(16), 4074-4088.</Citation>
</Reference>
<Reference>
<Citation>Flowers, J. M., Molina, J., Rubinstein, S., Huang, P., Schaal, B. A., & Purugganan, M. D. (2011). Natural selection in gene-dense regions shapes the genomic pattern of polymorphism in wild and domesticated rice. Molecular Biology and Evolution, 29(2), 675-687.</Citation>
</Reference>
<Reference>
<Citation>Fontaine, M. C., Pease, J. B., Steele, A., Waterhouse, R. M., Neafsey, D. E., Sharakhov, I. V., … Besansky, N. J. (2015). Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science, 347(6217), 1258524.</Citation>
</Reference>
<Reference>
<Citation>Fumagalli, M., Vieira, F. G., Korneliussen, T. S., Linderoth, T., Huerta-Sánchez, E., Albrechtsen, A., & Nielsen, R. (2013). Quantifying population genetic differentiation from next-generation sequencing data. Genetics, 195(3), 979-992.</Citation>
</Reference>
<Reference>
<Citation>Fumagalli, M., Vieira, F. G., Linderoth, T., & Nielsen, R. (2014). ngstools: Methods for population genetics analyses from next-generation sequencing data. Bioinformatics, 30(10), 1486-1487.</Citation>
</Reference>
<Reference>
<Citation>Gao, Z., Przeworski, M., & Sella, G. (2015). Footprints of ancient-balanced polymorphisms in genetic variation data from closely related species. Evolution, 69(2), 431-446.</Citation>
</Reference>
<Reference>
<Citation>Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., … Fritz, M.-H.-Y. (2010). A draft sequence of the Neandertal genome. Science, 328(5979), 710-722.</Citation>
</Reference>
<Reference>
<Citation>Guerrero, R. F., & Hahn, M. W. (2017). Speciation as a sieve for ancestral polymorphism. Molecular Ecology, 26(20), 5362-5368.</Citation>
</Reference>
<Reference>
<Citation>Hamzeh, M., & Dayanandan, S. (2004). Phylogeny of Populus (Salicaceae) based on nucleotide sequences of chloroplast TRNT-TRNF region and nuclear rDNA. American Journal of Botany, 91(9), 1398-1408.</Citation>
</Reference>
<Reference>
<Citation>Han, F., Lamichhaney, S., Grant, B. R., Grant, P. R., Andersson, L., & Webster, M. T. (2017). Gene flow, ancient polymorphism, and ecological adaptation shape the genomic landscape of divergence among Darwin's finches. Genome Research, 27(6), 1004-1015.</Citation>
</Reference>
<Reference>
<Citation>Harris, K., & Nielsen, R. (2016). The genetic cost of Neanderthal introgression. Genetics, 203(2), 881-891.</Citation>
</Reference>
<Reference>
<Citation>Hart, J., De Araujo, F., Thomas, B., & Mansfield, S. (2013). Wood quality and growth characterization across intra-and inter-specific hybrid aspen clones. Forests, 4(4), 786-807.</Citation>
</Reference>
<Reference>
<Citation>Hobolth, A., Dutheil, J. Y., Hawks, J., Schierup, M. H., & Mailund, T. (2011). Incomplete lineage sorting patterns among human, chimpanzee, and orangutan suggest recent orangutan speciation and widespread selection. Genome Research, 21(3), 349-356.</Citation>
</Reference>
<Reference>
<Citation>Hudson, R. R., & Kaplan, N. L. (1995). Deleterious background selection with recombination. Genetics, 141(4), 1605-1617.</Citation>
</Reference>
<Reference>
<Citation>Hurst, L. D., Pál, C., & Lercher, M. J. (2004). The evolutionary dynamics of eukaryotic gene order. Nature Reviews Genetics, 5(4), 299.</Citation>
</Reference>
<Reference>
<Citation>Ingvarsson, P. K. (2008). Multilocus patterns of nucleotide polymorphism and the demographic history of Populus tremula. Genetics, 180, 329-340.</Citation>
</Reference>
<Reference>
<Citation>Jansson, S., & Douglas, C. J. (2007). Populus: A model system for plant biology. Annual Review of Plant Biology, 58, 435-458.</Citation>
</Reference>
<Reference>
<Citation>Kaplan, N. L., Hudson, R., & Langley, C. (1989). The “hitchhiking effect” revisited. Genetics, 123(4), 887-899.</Citation>
</Reference>
<Reference>
<Citation>Koch, M. A., Haubold, B., & Mitchell-Olds, T. (2000). Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Molecular Biology and Evolution, 17(10), 1483-1498.</Citation>
</Reference>
<Reference>
<Citation>Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. (2014). angsd: Analysis of next generation sequencing data. BMC Bioinformatics, 15(1), 356.</Citation>
</Reference>
<Reference>
<Citation>Lamichhaney, S., Berglund, J., Almén, M. S., Maqbool, K., Grabherr, M., Martinez-Barrio, A., … Andersson, L. (2015). Evolution of Darwin's finches and their beaks revealed by genome sequencing. Nature, 518(7539), 371.</Citation>
</Reference>
<Reference>
<Citation>Lee, T.-H., Guo, H., Wang, X., Kim, C., & Paterson, A. H. (2014). snphylo: A pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics, 15(1), 162.</Citation>
</Reference>
<Reference>
<Citation>Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997.</Citation>
</Reference>
<Reference>
<Citation>Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760.</Citation>
</Reference>
<Reference>
<Citation>Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., … Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078-2079.</Citation>
</Reference>
<Reference>
<Citation>Lin, Y.-C., Wang, J., Delhomme, N., Schiffthaler, B., Sundström, G., Zuccolo, A., … Cossu, R. M. (2018). Functional and evolutionary genomic inferences in Populus through genome and population sequencing of American and European aspen. Proceedings of the National Academy of Sciences of the United States of America, 115(46), E10970-E10978.</Citation>
</Reference>
<Reference>
<Citation>Lohmueller, K. E., Albrechtsen, A., Li, Y., Kim, S. Y., Korneliussen, T., Vinckenbosch, N., … Nielsen, R. (2011). Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome. PLOS Genetics, 7(10), e1002326.</Citation>
</Reference>
<Reference>
<Citation>Lohse, M., Bolger, A. M., Nagel, A., Fernie, A. R., Lunn, J. E., Stitt, M., & Usadel, B. (2012). robina: A user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Research, 40(W1), W622-W627.</Citation>
</Reference>
<Reference>
<Citation>Ma, T., Wang, K., Hu, Q., Xi, Z., Wan, D., Wang, Q., … Liu, J. (2018). Ancient polymorphisms and divergence hitchhiking contribute to genomic islands of divergence within a poplar species complex. Proceedings of the National Academy of Sciences of the United States of America, 115(2), E236-E243.</Citation>
</Reference>
<Reference>
<Citation>Mailund, T., Munch, K., & Schierup, M. H. (2014). Lineage sorting in apes. Annual Review of Genetics, 48, 519-535.</Citation>
</Reference>
<Reference>
<Citation>Martin, S. H., Davey, J. W., & Jiggins, C. D. (2014). Evaluating the use of ABBA-BABA statistics to locate introgressed loci. Molecular Biology and Evolution, 32(1), 244-257.</Citation>
</Reference>
<Reference>
<Citation>Martin, S. H., Davey, J. W., Salazar, C., & Jiggins, C. D. (2019). Recombination rate variation shapes barriers to introgression across butterfly genomes. PLOS Biology, 17(2), e2006288.</Citation>
</Reference>
<Reference>
<Citation>Martin, S. H., & Van Belleghem, S. M. (2017). Exploring evolutionary relationships across the genome using topology weighting. Genetics, 206(1), 429-438.</Citation>
</Reference>
<Reference>
<Citation>Matthey-Doret, R., & Whitlock, M. C. (2019). Background selection and FST: Consequences for detecting local adaptation. Molecular Ecology, 28, 3902-3914. https://doi.org/10.1111/mec.15197</Citation>
</Reference>
<Reference>
<Citation>McVicker, G., Gordon, D., Davis, C., & Green, P. (2009). Widespread genomic signatures of natural selection in hominid evolution. PLOS Genetics, 5(5), e1000471.</Citation>
</Reference>
<Reference>
<Citation>Meisel, R. P., & Connallon, T. (2013). The faster-X effect: Integrating theory and data. Trends in Genetics, 29(9), 537-544.</Citation>
</Reference>
<Reference>
<Citation>Munch, K., Nam, K., Schierup, M. H., & Mailund, T. (2016). Selective sweeps across twenty millions years of primate evolution. Molecular Biology and Evolution, 33(12), 3065-3074.</Citation>
</Reference>
<Reference>
<Citation>Nachman, M. W., & Payseur, B. A. (2012). Recombination rate variation and speciation: Theoretical predictions and empirical results from rabbits and mice. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1587), 409-421.</Citation>
</Reference>
<Reference>
<Citation>Nadachowska-Brzyska, K., Burri, R., Olason, P. I., Kawakami, T., Smeds, L., & Ellegren, H. (2013). Demographic divergence history of pied flycatcher and collared flycatcher inferred from whole-genome re-sequencing data. PLOS Genetics, 9(11), e1003942.</Citation>
</Reference>
<Reference>
<Citation>Nadeau, N. J., Whibley, A., Jones, R. T., Davey, J. W., Dasmahapatra, K. K., Baxter, S. W., … Blaxter, M. L. (2012). Genomic islands of divergence in hybridizing Heliconius butterflies identified by large-scale targeted sequencing. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1587), 343-353.</Citation>
</Reference>
<Reference>
<Citation>Neale, D. B., & Ingvarsson, P. K. (2008). Population, quantitative and comparative genomics of adaptation in forest trees. Current Opinion in Plant Biology, 11(2), 149-155.</Citation>
</Reference>
<Reference>
<Citation>Neale, D. B., & Kremer, A. (2011). Forest tree genomics: Growing resources and applications. Nature Reviews Genetics, 12(2), 111.</Citation>
</Reference>
<Reference>
<Citation>Nordborg, M., Hu, T. T., Ishino, Y., Jhaveri, J., Toomajian, C., Zheng, H., … Bergelson, J. (2005). The pattern of polymorphism in Arabidopsis thaliana. PLOS Biology, 3(7), e196.</Citation>
</Reference>
<Reference>
<Citation>Nosil, P., Funk, D. J., & Ortiz-Barrientos, D. (2009). Divergent selection and heterogeneous genomic divergence. Molecular Ecology, 18(3), 375-402.</Citation>
</Reference>
<Reference>
<Citation>Pamilo, P., & Nei, M. (1988). Relationships between gene trees and species trees. Molecular Biology and Evolution, 5(5), 568-583.</Citation>
</Reference>
<Reference>
<Citation>Patterson, N., Price, A. L., & Reich, D. (2006). Population structure and eigenanalysis. PLOS Genetics, 2(12), e190.</Citation>
</Reference>
<Reference>
<Citation>Pease, J. B., & Hahn, M. W. (2013). More accurate phylogenies inferred from low-recombination regions in the presence of incomplete lineage sorting. Evolution, 67(8), 2376-2384.</Citation>
</Reference>
<Reference>
<Citation>Phung, T. N., Huber, C. D., & Lohmueller, K. E. (2016). Determining the effect of natural selection on linked neutral divergence across species. PLOS Genetics, 12(8), e1006199.</Citation>
</Reference>
<Reference>
<Citation>Presgraves, D. C. (2018). Evaluating genomic signatures of “the large X-effect” during complex speciation. Molecular Ecology, 27(19), 3822-3830.</Citation>
</Reference>
<Reference>
<Citation>Prüfer, K., Munch, K., Hellmann, I., Akagi, K., Miller, J. R., Walenz, B., … Pääbo, S. (2012). The bonobo genome compared with the chimpanzee and human genomes. Nature, 486(7404), 527.</Citation>
</Reference>
<Reference>
<Citation>Ravinet, M., Faria, R., Butlin, R. K., Galindo, J., Bierne, N., Rafajlović, M., … Westram, A. M. (2017). Interpreting the genomic landscape of speciation: A road map for finding barriers to gene flow. Journal of Evolutionary Biology, 30(8), 1450-1477.</Citation>
</Reference>
<Reference>
<Citation>Ravinet, M., Yoshida, K., Shigenobu, S., Toyoda, A., Fujiyama, A., & Kitano, J. (2018). The genomic landscape at a late stage of stickleback speciation: High genomic divergence interspersed by small localized regions of introgression. PLOS Genetics, 14(5), e1007358.</Citation>
</Reference>
<Reference>
<Citation>Sankararaman, S., Mallick, S., Dannemann, M., Prüfer, K., Kelso, J., Pääbo, S., … Reich, D. (2014). The genomic landscape of Neanderthal ancestry in present-day humans. Nature, 507(7492), 354.</Citation>
</Reference>
<Reference>
<Citation>Sankararaman, S., Mallick, S., Patterson, N., & Reich, D. (2016). The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Current Biology, 26(9), 1241-1247.</Citation>
</Reference>
<Reference>
<Citation>Scally, A., Dutheil, J. Y., Hillier, L. D. W., Jordan, G. E., Goodhead, I., Herrero, J., … Durbin, R. (2012). Insights into hominid evolution from the gorilla genome sequence. Nature, 483(7388), 169.</Citation>
</Reference>
<Reference>
<Citation>Schiffels, S., & Durbin, R. (2014). Inferring human population size and separation history from multiple genome sequences. Nature Genetics, 46(8), 919.</Citation>
</Reference>
<Reference>
<Citation>Schumer, M., Cui, R., Powell, D. L., Rosenthal, G. G., & Andolfatto, P. (2016). Ancient hybridization and genomic stabilization in a swordtail fish. Molecular Ecology, 25(11), 2661-2679.</Citation>
</Reference>
<Reference>
<Citation>Schumer, M., Xu, C., Powell, D. L., Durvasula, A., Skov, L., Holland, C., … Przeworski, M. (2018). Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science, 360(6389), 656-660.</Citation>
</Reference>
<Reference>
<Citation>Seehausen, O., Butlin, R. K., Keller, I., Wagner, C. E., Boughman, J. W., Hohenlohe, P. A., … Widmer, A. (2014). Genomics and the origin of species. Nature Reviews Genetics, 15(3), 176.</Citation>
</Reference>
<Reference>
<Citation>Siewert, K. M., & Voight, B. F. (2017). Detecting long-term balancing selection using allele frequency correlation. Molecular Biology and Evolution, 34(11), 2996-3005.</Citation>
</Reference>
<Reference>
<Citation>Smith, J. M., & Haigh, J. (1974). The hitch-hiking effect of a favourable gene. Genetics Research, 23(1), 23-35.</Citation>
</Reference>
<Reference>
<Citation>Stamatakis, A. (2014). raxml version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313.</Citation>
</Reference>
<Reference>
<Citation>Stankowski, S., Chase, M. A., Fuiten, A. M., Rodrigues, M. F., Ralph, P. L., & Streisfeld, M. A. (2019). Widespread selection and gene flow shape the genomic landscape during a radiation of monkeyflowers. PLOS Biology, 17(7), e3000391.</Citation>
</Reference>
<Reference>
<Citation>Tarailo-Graovac, M., & Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics, 25(1), 11-14.</Citation>
</Reference>
<Reference>
<Citation>Turner, T. L., Hahn, M. W., & Nuzhdin, S. V. (2005). Genomic islands of speciation in Anopheles gambiae. PLOS Biology, 3(9), e285.</Citation>
</Reference>
<Reference>
<Citation>Tuskan, G. A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., … Salamov, A. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313(5793), 1596-1604.</Citation>
</Reference>
<Reference>
<Citation>Van Doren, B. M., Campagna, L., Helm, B., Illera, J. C., Lovette, I. J., & Liedvogel, M. (2017). Correlated patterns of genetic diversity and differentiation across an avian family. Molecular Ecology, 26(15), 3982-3997.</Citation>
</Reference>
<Reference>
<Citation>Vicoso, B., & Charlesworth, B. (2006). Evolution on the X chromosome: Unusual patterns and processes. Nature Reviews Genetics, 7(8), 645.</Citation>
</Reference>
<Reference>
<Citation>Vijay, N., Weissensteiner, M., Burri, R., Kawakami, T., Ellegren, H., & Wolf, J. B. (2017). Genomewide patterns of variation in genetic diversity are shared among populations, species and higher-order taxa. Molecular Ecology, 26(16), 4284-4295.</Citation>
</Reference>
<Reference>
<Citation>Wang, B., Mojica, J. P., Perera, N., Lee, C.-R., Lovell, J. T., Sharma, A., … Mitchell-Olds, T. (2019). Ancient polymorphisms contribute to genome-wide variation by long-term balancing selection and divergent sorting in Boechera stricta. Genome Biology, 20(1), 126.</Citation>
</Reference>
<Reference>
<Citation>Wang, J., Street, N. R., Scofield, D. G., & Ingvarsson, P. K. (2016a). Natural selection and recombination rate variation shape nucleotide polymorphism across the genomes of three related Populus species. Genetics, 202(3), 1185-1200.</Citation>
</Reference>
<Reference>
<Citation>Wang, J., Street, N. R., Scofield, D. G., & Ingvarsson, P. K. (2016b). Variation in linked selection and recombination drive genomic divergence during allopatric speciation of European and American aspens. Molecular Biology and Evolution, 33(7), 1754-1767.</Citation>
</Reference>
<Reference>
<Citation>Wolf, J. B., & Ellegren, H. (2017). Making sense of genomic islands of differentiation in light of speciation. Nature Reviews Genetics, 18(2), 87.</Citation>
</Reference>
<Reference>
<Citation>Wu, C. I. (2001). The genic view of the process of speciation. Journal of Evolutionary Biology, 14(6), 851-865.</Citation>
</Reference>
<Reference>
<Citation>Yin, T., DiFazio, S. P., Gunter, L. E., Zhang, X., Sewell, M. M., Woolbright, S. A., … Tuskan, G. A. (2008). Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genome Research, 18(3), 422-430.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
<li>République populaire de Chine</li>
<li>Suède</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
</noRegion>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
</country>
<country name="Suède">
<noRegion>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
</noRegion>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
</country>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Park, Eung Jun" sort="Park, Eung Jun" uniqKey="Park E" first="Eung-Jun" last="Park">Eung-Jun Park</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000416 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000416 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32068935
   |texte=   Evidence for widespread selection in shaping the genomic landscape during speciation of Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32068935" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020